Excess Molar Volumes, Relative Permittivities, and Refractive Indexes of 1,1,2,2-Tetrachloroethane + Pyridine, +Anisole, +Methyl Ethyl Ketone, and +1,4-Dioxane at 303.15 K

Jagan Nath* and Jai Gopal Pandey

Chemistry Department, Gorakhpur University, Gorakhpur 273009, India

Excess molar volumes, $V_{\rm m}^{\rm E}$, relative permittivities, $\epsilon_{\rm r}$, and refractive indexes, $n_{\rm D}$, have been measured for binary mixtures of 1,1,2,2-tetrachloroethane (CHCl₂CHCl₂) with pyridine (C₅H₅N), anisole (C₆H₅OCH₃), methyl ethyl ketone (CH₃COC₂H₅), and 1,4-dioxane (1,4-C₄H₈O₂) at 303.15 K. $V_{\rm m}^{\rm E}$ has been found to be negative throughout the entire mole fraction range for all these mixtures. The values of the deviations of $\epsilon_{\rm r}$ and $n_{\rm D}$ from a mole fraction average, which are represented respectively by $\Delta \epsilon_{\rm r}$ and $\Delta n_{\rm D}$ have been calculated. The results of $V_{\rm m}^{\rm E}$, $\Delta n_{\rm D}$, and $\Delta \epsilon_{\rm r}$ for the various mixtures have been fitted by the method of least squares to smoothing equations.

Introduction

Binary mixtures of 1,1,2,2-tetrachloroethane (CHCl₂-CHCl₂) with pyridine (C_5H_5N), anisole ($C_6H_5OCH_3$), methyl ethyl ketone (CH₃COC₂H₅), and 1,4-dioxane (1,4-C₄H₈O₂) are of considerable interest from the viewpoint of the existence of an electron donor-acceptor interaction leading to the formation of intermolecular complexes between the components. The specific interaction of C_5H_5N with CHCl₂-CHCl₂ can be thought of as being due to the presence of lone-pair electrons on the nitrogen atom of C_5H_5N , on account of which it can act as an n-donor toward CHCl₂-CHCl₂. On the other hand, the presence of lone-pair electrons on the oxygen atoms of CH₃COC₂H₅ and 1,4-

 $_{8}O_{2}$ can make these compounds act as n-donors, and as described by Mulliken (1963), C₆H₅OCH₃ which contains

 OCH_3 group and an aromatic ring system can act as an $n\pi$ -type donor toward $CHCl_2CHCl_2$, which can be involved in the formation of hydrogen bonds with and act

 σ -acceptor toward C₅H₅N, C₆H₅OCH₃, CH₃COC₂H₅, and 1,4-C₄H₈O₂. Although Nath and Tripathi (1983, 1984, 1986) have made measurements of excess molar volumes,

, ultrasonic velocities, u, relative permittivities, $\epsilon_{\rm r}$, refractive indexes, $n_{\rm D}$, and dynamic viscosities, η , for mixtures of CHCl₂CHCl₂ with dimethyl ketone and Chadha and Tripathi (1995) have measured excess molar enthalpies, $H_{\rm m}^{\rm E}$, for mixtures of CHCl₂CHCl₂ with 2-methyl-furan, tetrahydrofuran, 1,4-dioxane, and cyclopentanone, extensive studies concerning interactions between components of binary mixtures of CHCl₂CHCl₂ with n-donor components have not been made. Hence, we have measured excess molar volume, $V_{\rm m}^{\rm E}$, relative permittivities, $\epsilon_{\rm r}$, and refractive indexes, $n_{\rm D}$, of CHCl₂CHCl₂ + C₅H₅N, +C₆H₅OCH₃, +CH₃COC₂H₅, and +1,4-C₄H₈O₂, and the results of these measurements are reported and interpreted here.

Experimental Section

Materials. 1,1,2,2-Tetrachloroethane, methyl ethyl ketone and anisole, all three of AR quality, and 1,4-dioxane of uv spectral grade quality were obtained from Sisco Research Laboratories, Pvt. Ltd., Bombay. 1,1,2,2-Tetrachloroethane and methyl ethyl ketone were shaken with potassium carbonate solution, separated, and then dried over anhydrous potassium carbonate, followed by fractional distillations. Anisole was distilled from sodium. Pyridine

Table 1.	Refractive Ind	lexes, <i>n</i> *, and	l Relative	
Permittiv	ities, ϵ_r^* , of the	Pure Compo	nent Liquids at	t T :
303 15 K	-	-	-	

		n _D *		€r r
compd	obs	lit.	obs	lit.
C ₅ H ₅ N	1.5040	1.504 66 ^a	12.164	12.17^{e}
C ₆ H ₅ OCH ₃	1.5118	$1.511 \ 60^{b}$	4.249	4.250^{f}
CH ₃ COC ₂ H ₅	1.3740	$1.374 \ 12^{c}$	17.664	17.65 ^g
$1,4-C_4H_8O_2$	1.4180	$1.418\ 09^{d}$	2.200	
CHCl ₂ CHCl ₂	1.4885	$1.488 \ 45^d$	7.460	7.464^{h}

^{*a*} From Riddick and Bunger (1970). ^{*b*} Value obtained by extrapolation of data on n_D^* from Timmermans (1950). ^{*c*} From Timmermans (1950). ^{*d*} Value obtained by extrapolation of data on n_D^* from Riddick and Bunger (1970). ^{*e*} Nath (1995). ^{*f*} Value obtained by extrapolation on data on ϵ_r^* from Riddick and Bunger (1970) and Jacobs et al. (1944). ^{*g*} Nath and Saini (1990). ^{*h*} Value obtained by interpolation of data on ϵ_r^* from Nath and Tripathi (1984) and Riddick and Bunger (1970).

of HPLC quality was obtained from S. D. Fine Chemicals Ltd. and was used without further purification. 1,4-Dioxane was stored over sodium wire and was used. The densities of these purified samples of the various liquids were measured using a single-capillary pycnometer and have been reported recently (Nath, 1996) as 0.972 86, 0.984 64, 0.794 49, 1.022 32, and 1.578 57 g·cm⁻³ for C₅H₅N, C₆H₅OCH₃, CH₃COC₂H₅, 1,4-C₄H₈O₂, and CHCl₂CHCl₂, respectively, at T = 303.15 K, as compared with the corresponding literature (Timmermans, 1950) values 0.972 81, 0.984 62, 0.794 52, 1.022 30, and 1.578 60 g·cm⁻³ for the various liquids in the same order.

Methods. (i) Excess molar volumes, $V_{\rm m}^{\rm E}$, were measured with an imprecision of the order of $\pm 0.002 \, {\rm cm}^3 \cdot {\rm mol}^{-1}$, using a two-limbed Pyrex glass dilatometer, as described earlier (Nath and Chaudhary, 1992). Known amounts of the two liquid components were confined separately over mercury in the absence of air spaces in the two limbs of the dilatometer. The dilatometer (mounted on a stand) was immersed in a water thermostat, at (303.15 \pm 0.01 K). The mixing of the liquid components was achieved by rocking the cell back and forth through a definite angle, and the mercury levels in the capillary of the dilatometer were noted with an accuracy of ± 0.001 cm using a cathetometer.

(ii) Relative permittivities, ϵ_r , were measured at (303.15 \pm 0.01) K and at 1.8 MHz with a decameter type DK₀₃ (Wissenschaftlich-Technische, Werkstätten, Germany), using one cell MFL 1/S, no. 2078, for mixtures having $\epsilon_r <$

Table 2. Experimental Values of Excess Molar Volumes, V_{m}^E , for CHCl₂CHCl₂ + C₅H₅N, C₆H₅OCH₃, CH₃COC₂H₅, and 1,4-C₄H₈O₂ at T = 303.15 K

	$V_{\rm m}^{\rm E}$ /		$V_{\rm m}^{\rm E}$ /		$V_{\rm m}^{\rm E}$ /		$V_{\rm m}^{\rm E}$ /
	cm³∙		cm³∙		cm³∙		cm³∙
X	mol^{-1}	X	mol^{-1}	X	mol^{-1}	X	mol ⁻¹
		xCHCl	2CHCl2	+(1-x)	C ₅ H ₅ N		
0.0475	-0.014	0.2020	-0.045	0.5549	-0.076	0.7857	-0.051
0.0664	-0.017	0.2661	-0.057	0.6000	-0.076	0.8378	-0.042
0.0925	-0.028	0.3551	-0.068	0.6577	-0.070	0.8798	-0.030
0.1530	-0.039	0.4615	-0.074	0.7348	-0.063	0.9269	-0.017
	;	xCHCl ₂ C	$CHCl_2 +$	(1 - x)C	6H5OCH	3	
0.0587	-0.025	0.2476	-0.065	0.6061	-0.070	0.8899	-0.027
0.0769	-0.032	0.3022	-0.076	0.6765	-0.065	0.9309	-0.018
0.0986	-0.039	0.3449	-0.080	0.7254	-0.059		
0.1533	-0.047	0.4622	-0.083	0.7802	-0.053		
0.2009	-0.056	0.5291	-0.079	0.8131	-0.047		
	Y	CHCl ₂ C	$HCl_{0} + ($	1 - v)CH	I COC I	I	
0759	-0 195	0 2007	-0.439	0 5399	-0.685	0 8397	-0.315
0789	-0.201	0.2007	-0.506	0.6000	-0.636	0.0007	-0.196
) 1338	-0.323	0.2473	-0.578	0.0274	-0.570	0.0000	-0.071
) 1521	-0.353	0.3750	-0.638	0.8085	-0.378	0.0000	0.071
5.1021	0.000		0.000	0.0000			
	X	CHCI ₂ C	$HCI_2 + ($	(1 - x)(1,	$4 - C_4 H_8 O$	2)	
).0615	-0.030	0.2620	-0.136	0.5322	-0.229	0.8489	-0.162
).1118	-0.060	0.3002	-0.154	0.6082	-0.234	0.8970	-0.120
).1624	-0.083	0.3353	-0.171	0.6564	-0.232	0.9213	-0.096
).1913	-0.100	0.4033	-0.192	0.7532	-0.213	0.9539	-0.055
).2310	-0.123	0.4813	-0.220	0.8150	-0.185		

Table 3.	Relative	Permittivities	s, ∈ _r , for CH	ICl ₂ CHCl ₂ +
5N, C	6H5OCH3,	CH ₃ COC ₂ H ₅ , a	and 1,4-C ₄ H	I_8O_2 at $T =$
303.15 K				

	$\epsilon_{ m r}$	X	$\epsilon_{\rm r}$	X	$\epsilon_{ m r}$	X	$\epsilon_{ m r}$
		xCHCl	2CHCl2	+(1 - x)	C ₅ H ₅ N		
0.0437	12.310	0.2448	12.589	0.4833	12.095	0.7438	10.418
0.0798	12.412	0.2893	12.569	0.5371	11.857	0.8154	9.730
0.1186	12.488	0.3360	12.520	0.5830	11.602	0.8822	8.998
0.1607	12.556	0.3847	12.422	0.6328	11.297	0.9287	8.428
0.1982	12.579	0.4332	12.284	0.6952	10.836		
	j.	xCHCl ₂ C	$HCl_2 +$	$(1 - x)C_{0}$	3H5OCH	3	
0.0542	4.412	0.3007	5.106	0.5619	5.832	0.8498	6.802
0.1062	4.569	0.3568	5.257	0.6046	5.954	0.8945	6.990
0.1516	4.701	0.3996	5.378	0.6622	6.134	0.9499	7.226
0.2045	4.848	0.4474	5.508	0.7085	6.289		
0.2570	4.988	0.5100	5.680	0.7539	6.448		
	Х	CHCl ₂ Cl	$HCl_2 + ($	1 - x)CH	I3COC ₂ F	I ₅	
0.0447	17.728	0.2727	16.938	0.5159	14.528	0.7653	11.052
0.0890	17.718	0.3169	16.601	0.5578	13.997	0.8375	9.953
0.1354	17.617	0.3649	16.180	0.6120	13.266	0.8858	9.212
0.1765	17.473	0.4113	15.713	0.6661	12.508	0.9439	8.321
0.2255	17.230	0.4587	15.196	0.7151	11.806		
	X	CHCl ₂ CI	$HCl_2 + ($	(1 - x)(1, 4)	$4 - C_4 H_8 O$	2)	
0.0128	2.258	0.1800	3.020	0.4522	4.196	0.7332	5.603
0.0321	2.352	0.2215	3.200	0.5094	4.455	0.7591	5.752
0.0726	2.539	0.2589	3.360	0.5507	4.650	0.8151	6.099
0.1083	2.701	0.2882	3.486	0.6086	4.929	0.8727	6.487
0.1347	2.820	0.3558	3.776	0.6769	5.286	0.9314	6.912
0.1501	2.888	0.3994	3.966	0.7044	5.438	0.9715	7.224

7.0, and another cell MFL 2/S, no. 2084, for mixtures having $\epsilon_r > 7.0$, as described earlier (Nath and Singh, 1987). The imprecision in ϵ_r is ~0.002 units for mixtures having $\epsilon_r < 7.0$, and is ~0.005 units for mixtures having $\epsilon_r > 7.0$.

(iii) The refractive indexes (sodium D line), $n_{\rm D}$, were measured at (303.15 ± 0.01) K, with an accuracy of ±0.0002, using a thermostated Abbe refractometer.

Results and Discussion

The values of n_D^* and ϵ_{Γ}^* of the pure liquids C₅H₅N, C₆H₅-OCH₃, CH₃COC₂H₅, 1,4-C₄H₈O₂, and CHCl₂CHCl₂ are given in Table 1. Values of V_m^E for *x*CHCl₂CHCl₂ + (1 - *x*)C₅H₅N, *x*CHCl₂CHCl₂ + (1 - *x*)C₆H₅OCH₃, *x*CHCl₂CHCl₂CHCl₂

Table 4. Refractive Indexes, n_D , for CHCl₂CHCl₂ + C₅H₅N, C₆H₅OCH₃, CH₃COC₂H₅, and 1,4-C₄H₈O₂ at T = 303.15 K

$x CHCl_2 CHCl_2 + (1 - x)C_5H_5N$ 0.0491 1.5024 0.2899 1.4988 0.5292 1.4952 0.8111 1.4914 0.1294 1.5010 0.3318 1.4982 0.5843 1.4945 0.8518 1.4903 0.1619 1.5005 0.3774 1.4975 0.6459 1.4935 0.8633 1.4900 0.2035 1.4998 0.4384 1.4966 0.7038 1.4928 0.9328 1.4893 0.2579 1.4992 0.4656 1.4962 0.7560 1.4922 $x CHCl_2 CHCl_2 + (1 - x)C_6H_5 OCH_3$ 0.0802 1.5102 0.3261 1.5045 0.5294 1.4996 0.8556 1.4920 0.1077 1.5095 0.3439 1.5038 0.5982 1.4982 0.9468 1.4900 0.2037 1.5072 0.4456 1.5015 0.7766 1.4940 0.2579 1.5060 0.4948 1.5005 0.8204 1.4930 $x CHCl_2 CHCl_2 + (1 - x)CH_3 COC_2 H_5$ 0.1037 1.3895 0.3634 1.4240 0.5633 1.4468 0.7559 1.4663 0.2221 1.4052 0.3918 1.4272 0.6059 1.4510 0.8102 1.4713 0.2683 1.4120 0.4543 1.4345 0.6618 1.4570 0.8752 1.4774 0.3070 1.4168 0.4990 1.4398 0.7089 1.4620 0.9275 1.4813 $x CHCl_2 CHCl_2 + (1 - x)(1.4-C_4 H_8 O_2)$ 0.0289 1.4210 0.1710 1.4335 0.4737 1.4576 0.8210 1.4794 0.0528 1.4232 0.3128 1.4454 0.6040 1.4660 0.8991 1.4844 0.1198 1.4290 0.4000 1.4520 0.6980 1.4722	X	n _D	X	n _D	X	n _D	X	n _D	
$\begin{array}{c} 0.0491 & 1.5024 & 0.2899 & 1.4988 & 0.5292 & 1.4952 & 0.8111 & 1.4914 \\ 0.1294 & 1.5010 & 0.3318 & 1.4982 & 0.5843 & 1.4945 & 0.8518 & 1.4903 \\ 0.1619 & 1.5005 & 0.3774 & 1.4975 & 0.6459 & 1.4935 & 0.8633 & 1.4900 \\ 0.2035 & 1.4998 & 0.4384 & 1.4966 & 0.7038 & 1.4928 & 0.9328 & 1.4893 \\ 0.2579 & 1.4992 & 0.4656 & 1.4962 & 0.7560 & 1.4922 \\ & & & & & & \\ xCHCl_2CHCl_2 + (1 - x)C_6H_5OCH_3 \\ 0.0802 & 1.5102 & 0.3261 & 1.5045 & 0.5294 & 1.4996 & 0.8556 & 1.4920 \\ 0.1077 & 1.5095 & 0.3439 & 1.5038 & 0.5982 & 1.4982 & 0.9468 & 1.4900 \\ 0.1702 & 1.5080 & 0.3846 & 1.5030 & 0.6915 & 1.4960 \\ 0.2097 & 1.5072 & 0.4456 & 1.5015 & 0.7766 & 1.4940 \\ 0.2579 & 1.5060 & 0.4948 & 1.5005 & 0.8204 & 1.4930 \\ & & & & & \\ xCHCl_2CHCl_2 + (1 - x)CH_3COC_2H_5 \\ 0.1037 & 1.3895 & 0.3634 & 1.4240 & 0.5633 & 1.4468 & 0.7559 & 1.4663 \\ 0.2221 & 1.4052 & 0.3918 & 1.4272 & 0.6059 & 1.4510 & 0.8102 & 1.4714 \\ 0.2683 & 1.4120 & 0.4543 & 1.4345 & 0.6618 & 1.4570 & 0.8752 & 1.4774 \\ 0.3070 & 1.4168 & 0.4990 & 1.4398 & 0.7089 & 1.4620 & 0.9275 & 1.4813 \\ & & & & \\ xCHCl_2CHCl_2 + (1 - x)(1.4-C_4H_8O_2) \\ 0.0289 & 1.4210 & 0.1710 & 1.4335 & 0.4737 & 1.4576 & 0.8210 & 1.4794 \\ 0.0528 & 1.4220 & 0.2531 & 1.4408 & 0.5931 & 1.4655 & 0.8291 & 1.4804 \\ 0.0528 & 1.4232 & 0.3128 & 1.4454 & 0.6040 & 1.4660 & 0.8991 & 1.4844 \\ 0.9917 & 1.4265 & 0.3205 & 1.4460 & 0.6768 & 1.4710 & 0.9048 & 1.4844 \\ 0.1198 & 1.4290 & 0.4000 & 1.4520 & 0.6980 & 1.4722 \\ \end{array}$	xCHCl ₂ CHCl ₂ + $(1 - x)$ C ₅ H ₅ N								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0491	1.5024	0.2899	1.4988	0.5292	1.4952	0.8111	1.4914	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1294	1.5010	0.3318	1.4982	0.5843	1.4945	0.8518	1.4905	
$\begin{array}{c} 0.2035 & 1.4998 & 0.4384 & 1.4966 & 0.7038 & 1.4928 & 0.9328 & 1.4898 \\ 0.2579 & 1.4992 & 0.4656 & 1.4962 & 0.7560 & 1.4922 \\ & $x CHCl_2 CHCl_2 + (1-x)C_6H_5 OCH_3$ \\ 0.0802 & 1.5102 & 0.3261 & 1.5045 & 0.5294 & 1.4996 & 0.8556 & 1.4920 \\ 0.1077 & 1.5095 & 0.3439 & 1.5038 & 0.5982 & 1.4982 & 0.9468 & 1.4900 \\ 0.1702 & 1.5080 & 0.3846 & 1.5030 & 0.6915 & 1.4960 \\ 0.2097 & 1.5072 & 0.4456 & 1.5015 & 0.7766 & 1.4940 \\ 0.2579 & 1.5060 & 0.4948 & 1.5005 & 0.8204 & 1.4930 \\ & $x CHCl_2 CHCl_2 + (1-x)CH_3 COC_2 H_5$ \\ 0.1037 & 1.3895 & 0.3634 & 1.4240 & 0.5633 & 1.4468 & 0.7559 & 1.4663 \\ 0.2221 & 1.4052 & 0.3918 & 1.4272 & 0.6059 & 1.4510 & 0.8102 & 1.4713 \\ 0.2683 & 1.4120 & 0.4543 & 1.4345 & 0.6618 & 1.4570 & 0.8752 & 1.4770 \\ 0.3070 & 1.4168 & 0.4990 & 1.4398 & 0.7089 & 1.4620 & 0.9275 & 1.4813 \\ & $x CHCl_2 CHCl_2 + (1-x)(1.4-C_4 H_8 O_2)$ \\ 0.0289 & 1.4210 & 0.1710 & 1.4335 & 0.4737 & 1.4576 & 0.8210 & 1.4794 \\ 0.0424 & 1.4220 & 0.2531 & 1.4408 & 0.5931 & 1.4655 & 0.8291 & 1.4804 \\ 0.0528 & 1.4232 & 0.3128 & 1.4454 & 0.6040 & 1.4660 & 0.8991 & 1.4844 \\ 0.0917 & 1.4265 & 0.3205 & 1.4460 & 0.6768 & 1.4710 & 0.9048 & 1.4844 \\ 0.1198 & 1.4290 & 0.4000 & 1.4520 & 0.6980 & 1.4722 \\ \end{array}$	0.1619	1.5005	0.3774	1.4975	0.6459	1.4935	0.8633	1.4904	
$\begin{array}{c} 0.2579 & 1.4992 & 0.4656 & 1.4962 & 0.7560 & 1.4922 \\ x CHCl_2 CHCl_2 + (1-x) C_6 H_5 OCH_3 \\ 0.0802 & 1.5102 & 0.3261 & 1.5045 & 0.5294 & 1.4996 & 0.8556 & 1.4920 \\ 0.1077 & 1.5095 & 0.3439 & 1.5038 & 0.5982 & 1.4982 & 0.9468 & 1.4900 \\ 0.1702 & 1.5080 & 0.3846 & 1.5015 & 0.7766 & 1.4940 \\ 0.2097 & 1.5072 & 0.4456 & 1.5015 & 0.7766 & 1.4940 \\ 0.2579 & 1.5060 & 0.4948 & 1.5005 & 0.8204 & 1.4930 \\ x CHCl_2 CHCl_2 + (1-x) CH_3 COC_2 H_5 \\ 0.1037 & 1.3895 & 0.3634 & 1.4240 & 0.5633 & 1.4468 & 0.7559 & 1.4663 \\ 0.2221 & 1.4052 & 0.3918 & 1.4272 & 0.6059 & 1.4510 & 0.8102 & 1.4716 \\ 0.2683 & 1.4120 & 0.4543 & 1.4345 & 0.6618 & 1.4570 & 0.8752 & 1.4776 \\ 0.3070 & 1.4168 & 0.4990 & 1.4398 & 0.7089 & 1.4620 & 0.9275 & 1.4815 \\ x CHCl_2 CHCl_2 + (1-x)(1.4-C_4 H_8 O_2) \\ 0.0289 & 1.4210 & 0.1710 & 1.4335 & 0.4737 & 1.4576 & 0.8210 & 1.4796 \\ 0.0424 & 1.4220 & 0.2531 & 1.4408 & 0.5931 & 1.4655 & 0.8291 & 1.4806 \\ 0.0528 & 1.4232 & 0.3128 & 1.4454 & 0.6040 & 1.4660 & 0.8991 & 1.4846 \\ 0.1198 & 1.4290 & 0.4000 & 1.4520 & 0.6980 & 1.4722 \\ \end{array}$	0.2035	1.4998	0.4384	1.4966	0.7038	1.4928	0.9328	1.4895	
$x CHCl_2 CHCl_2 + (1 - x)C_6H_5 OCH_3$ 0.0802 1.5102 0.3261 1.5045 0.5294 1.4996 0.8556 1.4920 0.1077 1.5095 0.3439 1.5038 0.5982 1.4982 0.9468 1.4900 0.1702 1.5080 0.3846 1.5030 0.6915 1.4960 0.2097 1.5072 0.4456 1.5015 0.7766 1.4940 0.2579 1.5060 0.4948 1.5005 0.8204 1.4930 $x CHCl_2 CHCl_2 + (1 - x)CH_3 COC_2 H_5$ 0.1037 1.3895 0.3634 1.4240 0.5633 1.4468 0.7559 1.4663 0.2221 1.4052 0.3918 1.4272 0.6059 1.4510 0.8102 1.4713 0.2683 1.4120 0.4543 1.4345 0.6618 1.4570 0.8752 1.4770 0.3070 1.4168 0.4990 1.4398 0.7089 1.4620 0.9275 1.4813 $x CHCl_2 CHCl_2 + (1 - x)(1.4 - C_4 H_8 O_2)$ 0.0289 1.4210 0.1710 1.4335 0.4737 1.4576 0.8210 1.4794 0.0424 1.4220 0.2531 1.4408 0.5931 1.4655 0.8291 1.4804 0.0528 1.4232 0.3128 1.4454 0.6040 1.4660 0.8991 1.4844 0.1198 1.4290 0.4000 1.4520 0.6980 1.4722	0.2579	1.4992	0.4656	1.4962	0.7560	1.4922			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			xCHCl ₂ C	$HCl_2 +$	$(1 - x)C_{0}$	3H5OCH	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0802	1.5102	0.3261	1.5045	0.5294	1.4996	0.8556	1.4920	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1077	1.5095	0.3439	1.5038	0.5982	1.4982	0.9468	1.4900	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1702	1.5080	0.3846	1.5030	0.6915	1.4960			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2097	1.5072	0.4456	1.5015	0.7766	1.4940			
$\begin{array}{c} x CHCl_2 CHCl_2 + (1-x) CH_3 COC_2 H_5 \\ 0.1037 & 1.3895 & 0.3634 & 1.4240 & 0.5633 & 1.4468 & 0.7559 & 1.4668 \\ 0.2221 & 1.4052 & 0.3918 & 1.4272 & 0.6059 & 1.4510 & 0.8102 & 1.4713 \\ 0.2683 & 1.4120 & 0.4543 & 1.4345 & 0.6618 & 1.4570 & 0.8752 & 1.4770 \\ 0.3070 & 1.4168 & 0.4990 & 1.4398 & 0.7089 & 1.4620 & 0.9275 & 1.4813 \\ x CHCl_2 CHCl_2 + (1-x)(1.4-C_4 H_8 O_2) \\ 0.0289 & 1.4210 & 0.1710 & 1.4335 & 0.4737 & 1.4576 & 0.8210 & 1.4790 \\ 0.0424 & 1.4220 & 0.2531 & 1.4408 & 0.5931 & 1.4655 & 0.8291 & 1.4800 \\ 0.0528 & 1.4232 & 0.3128 & 1.4454 & 0.6040 & 1.4660 & 0.8991 & 1.4840 \\ 0.0917 & 1.4265 & 0.3205 & 1.4460 & 0.6768 & 1.4710 & 0.9048 & 1.4840 \\ 0.1198 & 1.4290 & 0.4000 & 1.4520 & 0.6980 & 1.4722 \\ \end{array}$	0.2579	1.5060	0.4948	1.5005	0.8204	1.4930			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Х	CHCl ₂ Cl	$HCl_2 + ($	1 - x)CH	I ₃ COC ₂ F	I_5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1037	1.3895	0.3634	1.4240	0.5633	1.4468	0.7559	1.4665	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2221	1.4052	0.3918	1.4272	0.6059	1.4510	0.8102	1.4715	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2683	1.4120	0.4543	1.4345	0.6618	1.4570	0.8752	1.4770	
$\begin{array}{c} x CHCl_2 CHCl_2 + (1-x)(1,4-C_4H_8O_2) \\ 0.0289 & 1.4210 & 0.1710 & 1.4335 & 0.4737 & 1.4576 & 0.8210 & 1.4790 \\ 0.0424 & 1.4220 & 0.2531 & 1.4408 & 0.5931 & 1.4655 & 0.8291 & 1.4800 \\ 0.0528 & 1.4232 & 0.3128 & 1.4454 & 0.6040 & 1.4660 & 0.8991 & 1.4843 \\ 0.0917 & 1.4265 & 0.3205 & 1.4460 & 0.6768 & 1.4710 & 0.9048 & 1.4840 \\ 0.1198 & 1.4290 & 0.4000 & 1.4520 & 0.6980 & 1.4722 \\ \end{array}$	0.3070	1.4168	0.4990	1.4398	0.7089	1.4620	0.9275	1.4815	
0.0289 1.4210 0.1710 1.4335 0.4737 1.4576 0.8210 1.4790 0.0424 1.4220 0.2531 1.4408 0.5931 1.4655 0.8291 1.4800 0.0528 1.4232 0.3128 1.4454 0.6040 1.4660 0.8991 1.4840 0.0917 1.4265 0.3205 1.4460 0.6768 1.4710 0.9048 1.4840 0.1198 1.4290 0.4000 1.4520 0.6980 1.4722		Х	CHCl ₂ CI	$HCl_2 + ($	(1 - x)(1, x)	$4-C_4H_8O$	2)		
0.0424 1.4220 0.2531 1.4408 0.5931 1.4655 0.8291 1.4800 0.0528 1.4232 0.3128 1.4454 0.6040 1.4660 0.8991 1.4840 0.0917 1.4265 0.3205 1.4460 0.6768 1.4710 0.9048 1.4840 0.1198 1.4290 0.4000 1.4520 0.6980 1.4722 1.4840	0.0289	1.4210	0.1710	1.4335	0.4737	1.4576	0.8210	1.4796	
0.0528 1.4232 0.3128 1.4454 0.6040 1.4660 0.8991 1.4843 0.0917 1.4265 0.3205 1.4460 0.6768 1.4710 0.9048 1.4844 0.1198 1.4290 0.4000 1.4520 0.6980 1.4722	0.0424	1.4220	0.2531	1.4408	0.5931	1.4655	0.8291	1.4800	
0.0917 1.4265 0.3205 1.4460 0.6768 1.4710 0.9048 1.4840 0.1198 1.4290 0.4000 1.4520 0.6980 1.4722	0.0528	1.4232	0.3128	1.4454	0.6040	1.4660	0.8991	1.4845	
0.1198 1.4290 0.4000 1.4520 0.6980 1.4722	0.0917	1.4265	0.3205	1.4460	0.6768	1.4710	0.9048	1.4846	
	0.1198	1.4290	0.4000	1.4520	0.6980	1.4722			
		_			.				

Figure 1. $V_{\rm m}^{\rm E}$ plotted versus *x* for the following systems at 303.15 K: (\odot) *x*CHCl₂CHCl₂ + (1 - *x*)C₅H₅N; (\bullet) *x*CHCl₂CHCl₂ + (1 - *x*)C₆H₅OCH₃; (\Box) *x*CHCl₂CHCl₂ + (1 - *x*)CH₃COC₂H₅; (\triangle) *x*CHCl₂CHCl₂ + (1 - *x*)(1,4-C₄H₈O₂). The smoothed curves are based on the parameters *A*₁, *A*₂, *A*₃, and *A*₄ given in Table 5.

+ $(1 - x)CH_3COC_2H_5$, and $xCHCl_2CHCl_2 + (1 - x)(1,4-C_4H_8O_2)$ are given in Table 2, whereas those of the relative permittivities ϵ_r for these mixtures are given in Table 3, and values of n_D are given in Table 4. The values of $V_m^E/cm^3 \cdot mol^{-1}$ for the various mixtures of $CHCl_2CHCl_2$ have been plotted against the mole fraction of $CHCl_2CHCl_2$, x, in Figure 1, whereas the values of refractive indexes n_D of these mixtures have been plotted against x in Figure 2. The values of x have the uncertainty of ± 0.0001 . The values of the changes of refractive index on mixing, Δn_D ,

Table 5. Values of the Parameters A_i of eq 3 and the Standard Deviations, δ , for the Various Mixtures

•) xCHCl₂CHCl₂ + (1 - x)C₅H₅N; (\Box) xCHCl₂CHCl₂ + (1 - x)CHCl₂CHCl₂ + H₅OCH₃; (\odot) xCHCl₂CHCl₂ + (1 - x)CH₃COC₂H₅; (\triangle) xCHCl₂- $CHCl_2 + (1 - x)(1, 4-C_4H_8O_2)$. The smoothed curves are based on the values of n_D obtained from eq 1, using parameters A_1 , A_2 , A_3 , and A_4 given in Table 5.

for the various mixtures of CHCl₂CHCl₂ were calculated from the refractive indexes $n_{\rm D}$ of the mixtures, using the relation

$$\Delta n_{\rm D} = n_{\rm D} - \sum_{i} x_i n_{D,i}^* \tag{1}$$

where $n_{D,i}^*$ refers to the refractive index of the pure component *i* and *x_i* is the mole fraction of the component *i* in the mixture. Iglesias et al. (1984) have also represented the refractive index data for mixtures, by the changes of refractive index on mixing, $\Delta n_{\rm D}$. Also the values of the changes of relative permittivity on mixing $\Delta \epsilon_r$ for the various mixtures of CHCl₂CHCl₂ were calculated from the

relative permittivities ϵ_r of the mixtures, using the relation

$$\Delta \epsilon_{\rm r} = \epsilon_{\rm r} - \sum_{i} x_i \epsilon_{{\rm r},i}^* \tag{2}$$

where $\epsilon_{\mathbf{r},i}^*$ refers to the relative permittivity of the pure component *i*. $\Delta \epsilon_r$ has been plotted against *x* in Figure 3. The values of $V_{\rm m}^{\rm E}$, $\Delta n_{\rm D}$, and $\Delta \epsilon_{\rm r}$ for $x \rm CHCl_2 CHCl_2 + (1 - 1)$ x)C₅H₅N, xCHCl₂CHCl₂ + (1 - x)C₆H₅OCH₃, xCHCl₂CHCl₂ + $(1 - x)CH_3COC_2H_5$, and $xCHCl_2CHCl_2 + (1 - x)(1,4-x)$ C₄H₈O₂) were fitted by the method of least squares to the

$$Y = x(1 - x) \sum_{i=1}^{n} A_i (2x - 1)^{i-1}$$
(3)

where *Y* is $V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$ or $\Delta n_{\rm D}$ or $\Delta \epsilon_{\rm r}$. The values of the parameters A_i of eq 3 and the standard deviations δ are given in Table 5.

The data show that $V_{\rm m}^{\rm E}$ is negative throughout the entire range of *x* for *x*CHCl₂CHCl₂ + (1 - *x*)C₅H₅N, *x*CHCl₂-CHCl₂ + (1 - *x*)C₆H₅OCH₃, *x*CHCl₂CHCl₂ + (1 - *x*)CH₃-COC₂H₅, and *x*CHCl₂CHCl₂ + (1 - *x*)(1,4-C₄H₈O₂). At *x* = 0.5, $V_{\rm m}^{\rm E}$ for the various mixtures of CHCl₂CHCl₂ has the sequence

$$C_5H_5N > C_6H_5OCH_3 > 1,4-C_4H_8O_2 > CH_3COC_2H_5$$

The negative values of $V_{\rm m}^{\rm E}$ for the present mixtures show that CHCl₂CHCl₂ forms intermolecular complexes with C₅H₅N, C₆H₅OCH₃, CH₃COC₂H₅, and 1,4-C₄H₈O₂ in the liquid state. The relative permittivity data are found to exhibit positive deviations (Rivail and Thiebaut, 1974) from a mole fraction mixture law for chloroform + pyridine where a strong intermolecular complex is formed on account of the hydrogen-bond interaction between the components. The data show (see Figure 3) that $\Delta \epsilon_{\rm r}$ is highly positive for *x*CHCl₂CHCl₂ + (1 - *x*)C₅H₅N, and CHCl₂CHCl₂ + (1 - *x*)CH₃COC₂H₅, and slightly negative

xCHCl₂CHCl₂ + (1 - x)C₆H₅OCH₃, and xCHCl₂CHCl₂ $(1 - x)(1, 4-C_4$ H₈O₂). The positive values of $\Delta \epsilon_r$ for a system may be interpreted as being due to the specific

interaction between the components. The present values $\Delta \epsilon_{\rm r}$, thus, indicate that CHCl₂CHCl₂ forms strong intermolecular complexes with C₅H₅N and CH₃COC₂H₅, which is in accordance with the $V_{\rm m}^{\rm E}$ data. The values of

are highly negative (Chadha and Tripathi, 1995) for CHCl₂CHCl₂ + $(1 - x)(1,4-C_4H_8O_2)$, which gives evidence in favor of the formation of strong intermolecular complexes between CHCl₂CHCl₂ and 1,4-C₄H₈O₂ in the liquid state. The negative value of $\Delta\epsilon_r$ for xCHCl₂CHCl₂ + $(1 - x)C_6H_5$ -OCH₃ and xCHCl₂CHCl₂ + $(1 - x)(1,4-C_4H_8O_2)$ may be attributed to the predominance of contributions to $\Delta\epsilon_r$ from nonspecific interactions.

Literature Cited

Chadha, R.; Tripathi, A. D. Excess Molar Enthalpies of 1,1,2,2-Tetrachloroethane + 2-Methylfuran, + Tetrahydrofuran, + 1,4-Dioxane, and + Cyclopentanone at 308.15 and 318.15 K. *J. Chem. Eng. Data* **1995**, *40*, 645–646.

- Iglesias, M.; Orge, B.; Tojo, J. Speeds of Sound, Densities, Refractive Indices, and Isentropic Compressibilities of $\{x_1C_6H_6 + x_2c-C_6H_{12} + (1 x_1 x_2)C_6H_5Cl\}$ at the temperature 298.15 K. J. Chem. Thermodyn. **1994**, 26, 1179–1185.
- Jacobs, T. L.; Roberts, J. D.; MacMillan, W. G. The Dielectric Constants and Dipole Moments of Acetylenic Ethers. *J. Am. Chem. Soc.* **1944**, *66*, 656–657.
- Mulliken, R. S. The Interaction of Electron Donors and Acceptors. J. Chim. Phys. **1963**, 20–38.
- Nath, J. Ultrasonic Velocities, Relative Permittivities and Refractive Indices for Binary Mixtures of Trichloroethene with Pyridine and Quinoline. *Fluid Phase Equilib.* **1995**, *109*, 39–51.
- Nath, J. Speeds of Sound in and Isentropic Compressibilities of (1,1,2,2-Tetrachloroethane + Anisole, 1,4-Dioxane, Methylethylketone, and Pyridine) at T = 303.15 K. *J. Chem. Thermodyn.* **1996**, in press. Nath, J.; Tripathi, A. D. Binary Systems of 1,1,2,2-Tetrachloroethane
- Nath, J.; Tripathi, A. D. Binary Systems of 1,1,2,2 Tetrachloroethane with Benzene, Toluene, p-Xylene, Acetone, and Cyclohexane. 1. Excess Volumes, Ultrasonic Velocities, and Adiabatic Compressibilities at 298.15 and 308.15 K. J. Chem. Eng. Data 1983, 28, 263– 266.
- Nath, J.; Tripathi, A. D. Binary Systems of 1,1,2,2-Tetrachloroethane with Benzene, Toluene, p-Xylene, Acetone and Cyclohexane. Part
 2. Dielectric Properties at 308.15 K. J. Chem. Soc., Faraday Trans. 1 1984, 80, 1517–1524.
- Nath, J.; Tripathi, A. D. Viscosities of Binary Liquid Mixtures of 1,1,2,2-Tetrachloroethane with Benzene, Toluene, p-Xylene, Acetone and Cyclohexane. *Indian J. Pure Appl. Phys.* **1986**, *24*, 541–545.
- Nath, J.; Singh, G. Binary Systems of 1,2-Dichloroethane with Benzene, Toluene, p-Xylene, Quinoline and Cyclohexane, part 3. Dielectric Properties and Refractive Indices at 308.15 K. J. Chem. Soc., Faraday Trans. 1 1987, 83, 3167–3175.
- Nath, J.; Saini, R. Ultrasonic and Dielectric Behaviour of Binary Systems of Methyl Ethyl Ketone with 1,2-Dichloroethane, Methylene Chloride, Trichloroethene, Tetrachloroethene and Cyclohexane. J. Chem. Soc., Faraday Trans. 1990, 86, 645–650.
- Nath, J.; Chaudhary, S. K. Excess Volumes, Dielectric Constants, Refractive Indexes, and Viscosities for Anisole + Methylene Chloride, 1,2-Dichloroethane, Trichloroethene, Tetrachloroethene, and Cyclohexane. J. Chem. Eng. Data 1992, 37, 387–390.
- Redlich, O.; Kister, A. T. On the Thermodynamics of Solutions. IV. The Determination of Liquid-Vapour Equilibria by Measuring the Total Pressure. J. Am. Chem. Soc. 1949, 71, 505-507.
- Riddick, J. A.; Bunger, W. B. Techniques of Chemistry, Organic Solvents: Physical Properties and Methods of Purification, 3rd ed.; Wiley-Interscience: New York, 1970.
- Rivail, J.-L.; Thiebaut, J.-M. Dielectric Studies of Non-electrolyte Solutions. Part 2-Non-linear Behaviour of Associated Liquids. Application to the Study of Pyridine-Chloroform Interactions. J. Chem. Soc., Faraday Trans. 2 1974, 70, 430–439.
- Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds, Elsevier: Amsterdam, 1950.

Received for review February 12, 1996. Accepted April 28, 1996. The authors gratefully acknowledge the financial support received from the Council of Scientific and Industrial Research, New Delhi, India.

JE960054H

[®] Abstract published in Advance ACS Abstracts, June 1, 1996.